Programming the LU Factorization for a Multicore System with Accelerators

نویسندگان

  • Jakub Kurzak
  • Piotr Luszczek
  • Mathieu Faverge
  • Jack J. Dongarra
چکیده

LU factorization with partial pivoting is a canonical numerical procedure and the main component of the High Performance Linpack benchmark. This article presents an implementation of the algorithm for a hybrid, shared memory, system with standard CPU cores and GPU accelerators. Performance in excess of one TeraFLOPS is achieved using four AMD Magny Cours CPUs and four NVIDIA Fermi GPUs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hybrid Multicore Cholesky Factorization with Multiple GPU Accelerators

We present a Cholesky factorization for multicore with GPU accelerators. The challenges in developing scalable high performance algorithms for these emerging systems stem from their heterogeneity, massive parallelism, and the huge gap between the GPUs’ compute power vs the CPU-GPU communication speed. We show an approach that is largely based on software infrastructures that have already been d...

متن کامل

THE USE OF SEMI INHERITED LU FACTORIZATION OF MATRICES IN INTERPOLATION OF DATA

The polynomial interpolation in one dimensional space R is an important method to approximate the functions. The Lagrange and Newton methods are two well known types of interpolations. In this work, we describe the semi inherited interpolation for approximating the values of a function. In this case, the interpolation matrix has the semi inherited LU factorization.

متن کامل

Scheduling Linear Algebra Operations on Multicore Processors

State-of-the-art dense linear algebra software, such as the LAPACK and ScaLAPACK libraries, suffer performance losses on multicore processors due to their inability to fully exploit thread-level parallelism. At the same time the coarse-grain dataflow model gains popularity as a paradigm for programming multicore architectures. This work looks at implementing classic dense linear algebra workloa...

متن کامل

A Scalable High Performant Cholesky Factorization for Multicore with GPU Accelerators

We present a Cholesky factorization for multicore with GPU accelerators systems. The challenges in developing scalable high performance algorithms for these emerging systems stem from their heterogeneity, massive parallelism, and the huge gap between the GPUs’ compute power vs the CPU-GPU communication speed. We show an approach that is largely based on software infrastructures that have alread...

متن کامل

Scheduling dense linear algebra operations on multicore processors

State-of-the-art dense linear algebra software, such as the LAPACK and ScaLAPACK libraries, suffers performance losses on multicore processors due to their inability to fully exploit thread-level parallelism. At the same time, the coarse–grain dataflow model gains popularity as a paradigm for programming multicore architectures. This work looks at implementing classic dense linear algebra workl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012